The News of Us
  • Home
  • Business
  • Politics
  • Science and Technology
  • Health
  • Subscribe Us
No Result
View All Result
The News of Us
  • Home
  • Business
  • Politics
  • Science and Technology
  • Health
  • Subscribe Us
No Result
View All Result
The News of Us
No Result
View All Result

Microjets are faster than a speeding bullet

When a shock wave travels through material and reaches a free surface, chunks of material can break away and fly off at high speeds. If there are any defects on the surface, the shock forms microjets that travel faster than a speeding bullet.

Understanding how these microjets form and how they interact with material help to improve spacecraft shielding and understanding a planetary impact.

Lawrence Livermore National Laboratory (LLNL) scientists produced hydrodynamic simulations of laser-driven microjetting from micron-scale grooves on a tin surface. From these simulations, they were able to see microjet formation across a range of shock strengths, from drives that leave the target solid after release to drives that induce shock melting in the target.

When a metal sample is subjected to dynamic pressure from an impact, an explosion or irradiation by a high-power laser, a shock wave can develop near the loaded side and propagate into the sample. When the shock interacts with the sample’s free surface, it accelerates the surface and may cause localized material failure. As the shock wave interacts with surface defects (such as pits, bumps, voids, grooves or scratches), material can be ejected as clouds of small particles, or thin, directed jets at velocities significantly faster than the free surface.

Simulations are critical in studying microjets as they travel 1-10 kilometers per second (km/s), whereas a bullet travels about 0.3 km/s.

“The tin was designed with micron-scale grooves in the surface so we can generate microjets, studying how they propagate and interact,” said LLNL physicist Kyle Mackay, lead author of a paper appearing in and chosen as an editor’s pick in the Journal of Applied Physics.

The research is part of the Metal Eject Recollection Interaction and Transport (MERIT) project at LLNL.

The team found that jet formation can be classified into three regimes: a low-energy regime where material strength affects jet formation; a moderate-energy regime dominated by the changing phase of tin material; and a high-energy regime where results are insensitive to the material model and jet formation is described by idealized steady-jet theory. Mackay said transitioning between these regimes can increase the mass of the jet by 10 times.

“It’s no surprise that the harder you smack something, the more things come off of it,” said LLNL physicist Alison Saunders, a co-author of the paper and lead on the MERIT project. “But there is a lot of subtlety involved in understanding the materials physics that leads to such a relationship, and for a material like tin, which undergoes many phase transitions under shock loading, the relationship is far from linear.”

Livermore scientists Fady Najjar, Suzanne Ali, Jon Eggert, Tommor Haxhimali, Brandon Morgan, Hye-Sook Park, Yuan Ping and Camelia Stan, as well as researchers from the Laboratory for Laser Energetics at University of Rochester, contributed to the project.

Source: LLNL

[Read More…]

Previous Post

Science of building sandcastles finally understood

Next Post

Covid: Students and retirees form long-distance friendships

Related Posts

Uncategorized

Kourtney Kardashian, Travis Barker play tonsil hockey on Grammys 2022 red carpet

Uncategorized

Shaheen Holloway leaves Saint Peter’s for Seton Hall after magical March Madness run

Uncategorized

Why the Oscars dissed Encanto’s ‘We Don’t Talk About Bruno’

Uncategorized

90 Day Fiancé’s Ximena Reportedly Claims The Show Faked Scene With Mike And Her Kids

Uncategorized

Ciara Rocks Cheetah Print Halter Top Dress With High Slits At Billboard Women In Music – Photos

Uncategorized

Khloe Kardashian Works Up A Sweat In The Gym After Tristan’s Night Out With Kanye

Next Post

Covid: Students and retirees form long-distance friendships

Follow us for latest Business News | Political News | Science & Technology News | Health News.

Subscribe Us

By clicking subscribe, I authorize: (1) The News Of Us to use and share my information in accordance with its Terms of Service and Privacy Policy, and (2) The News Of Us or third-party companies, including The News Of Us’s business partners, to contact me by email with offers for goods and services at the email address provided. Please note that the information you have provided to us may be supplemented with additional information obtained from other sources.
Loading

© 2021 The News of Us, - All Rights Reserved.

  • Subscribe Us
  • Contact Us
  • Unsubscribe
  • Privacy Policy
  • Terms Of Service
No Result
View All Result
  • Home
  • Business
  • Politics
  • Science and Technology
  • Health
  • Subscribe Us

© 2021 The News of Us, - All Rights Reserved.